top of page

Cell Phone Dealer's Group

Public·50 members

MATHEMATICS, BASIC MATH AND ALGEBRA.pdf WORK



Mathematics is essential in the natural sciences, engineering, medicine, finance, computer science and the social sciences. Although mathematics is extensively used for modeling phenomena, the fundamental truths of mathematics are independent from any scientific experimentation. Some areas of mathematics, such as statistics and game theory, are developed in close correlation with their applications and are often grouped under applied mathematics. Other areas are developed independently from any application (and are therefore called pure mathematics), but often later find practical applications.[6][7] The problem of integer factorization, for example, which goes back to Euclid in 300 BC, had no practical application before its use in the RSA cryptosystem, now widely used for the security of computer networks.




MATHEMATICS, BASIC MATH AND ALGEBRA.pdf



Historically, the concept of a proof and its associated mathematical rigour first appeared in Greek mathematics, most notably in Euclid's Elements.[8] Since its beginning, mathematics was essentially divided into geometry and arithmetic (the manipulation of natural numbers and fractions), until the 16th and 17th centuries, when algebra[a] and infinitesimal calculus were introduced as new areas. Since then, the interaction between mathematical innovations and scientific discoveries has led to a rapid lockstep increase in the development of both.[9] At the end of the 19th century, the foundational crisis of mathematics led to the systematization of the axiomatic method,[10] which heralded a dramatic increase in the number of mathematical areas and their fields of application. The contemporary Mathematics Subject Classification lists more than 60 first-level areas of mathematics.


At the end of the 19th century, the foundational crisis in mathematics and the resulting systematization of the axiomatic method led to an explosion of new areas of mathematics.[23][10] The 2020 Mathematics Subject Classification contains no less than sixty-three first-level areas.[24] Some of these areas correspond to the older division, as is true regarding number theory (the modern name for higher arithmetic) and geometry. Several other first-level areas have "geometry" in their names or are otherwise commonly considered part of geometry. Algebra and calculus do not appear as first-level areas but are respectively split into several first-level areas. Other first-level areas emerged during the 20th century or had not previously been considered as mathematics, such as mathematical logic and foundations.[25]


A fundamental innovation was the ancient Greeks' introduction of the concept of proofs, which require that every assertion must be proved. For example, it is not sufficient to verify by measurement that, say, two lengths are equal; their equality must be proven via reasoning from previously accepted results (theorems) and a few basic statements. The basic statements are not subject to proof because they are self-evident (postulates), or are part of the definition of the subject of study (axioms). This principle, foundational for all mathematics, was first elaborated for geometry, and was systematized by Euclid around 300 BC in his book Elements.[32][33]


The four color theorem and optimal sphere packing were two major problems of discrete mathematics solved in the second half of the 20th century.[50] The P versus NP problem, which remains open to this day, is also important for discrete mathematics, since its solution would potentially impact a large number of computationally difficult problems.[51]


In the same period, various areas of mathematics concluded the former intuitive definitions of the basic mathematical objects were insufficient for ensuring mathematical rigour. Examples of such intuitive definitions are "a set is a collection of objects", "natural number is what is used for counting", "a point is a shape with a zero length in every direction", "a curve is a trace left by a moving point", etc.


Evidence for more complex mathematics does not appear until around 3000 BC, when the Babylonians and Egyptians began using arithmetic, algebra, and geometry for taxation and other financial calculations, for building and construction, and for astronomy.[74] The oldest mathematical texts from Mesopotamia and Egypt are from 2000 to 1800 BC. Many early texts mention Pythagorean triples and so, by inference, the Pythagorean theorem seems to be the most ancient and widespread mathematical concept after basic arithmetic and geometry. It is in Babylonian mathematics that elementary arithmetic (addition, subtraction, multiplication, and division) first appear in the archaeological record. The Babylonians also possessed a place-value system and used a sexagesimal numeral system which is still in use today for measuring angles and time.[75]


Numerous technical terms used in mathematics are neologisms, such as polynomial and homeomorphism.[97] Other technical terms are words of the common language that are used in an accurate meaning that may differs slightly from their common meaning. For example, in mathematics, "or" means "one, the other or both", while, in common language, it is either ambiguous or means "one or the other but not both" (in mathematics, the latter is called "exclusive or"). Finally, many mathematical terms are common words that are used with a completely different meaning.[98] This may lead to sentences that are correct and true mathematical assertions, but appear to be nonsense to people who do not have the required background. For example, "every free module is flat" and "a field is always a ring".


There is still a philosophical debate whether mathematics is a science. However, in practice, mathematicians are typically grouped with scientists, and mathematics shares much in common with the physical sciences. Like them, it is falsifiable, which means in mathematics that, if a result or a theory is wrong, this can be proved by providing a counterexample. Similarly as in science, theories and results (theorems) are often obtained from experimentation.[103] In mathematics, the experimentation may consist of computation on selected examples or of the study of figures or other representations of mathematical objects (often mind representations without physical support). For example, when asked how he came about his theorems, Gauss once replied "durch planmässiges Tattonieren" (through systematic experimentation).[104] However, some authors emphasize that mathematics differs from the modern notion of science by not relying on empirical evidence.[105][106][107][108]


The aftermath of World War II led to a surge in the development of applied mathematics in the US and elsewhere.[114][115] Many of the theories developed for applications were found interesting from the point of view of pure mathematics, and many results of pure mathematics were shown to have applications outside mathematics; in turn, the study of these applications may give new insights on the "pure theory".[116][117]


The unreasonable effectiveness of mathematics is a phenomenon that was named and first made explicit by physicist Eugene Wigner.[7] It is the fact that many mathematical theories, even the "purest" have applications outside their initial object. These applications may be completely outside their initial area of mathematics, and may concern physical phenomena that were completely unknown when the mathematical theory was introduced.[123] Examples of unexpected applications of mathematical theories can be found in many areas of mathematics.


In return, computing has also become essential for obtaining new results. This is a group of techniques known as experimental mathematics, which is the use of experimentation to discover mathematical insights.[133] The most well-known example is the four-color theorem, which was proven in 1976 with the help of a computer. This revolutionized traditional mathematics, where the rule was that the mathematician should verify each part of the proof. In 1998, the Kepler conjecture on sphere packing seemed to also be partially proven by computer. An international team had since worked on writing a formal proof; it was finished (and verified) in 2015.[134]


At the end of the 19th century, it appeared that the definitions of the basic concepts of mathematics were not accurate enough for avoiding paradoxes (non-Euclidean geometries and Weierstrass function) and contradictions (Russell's paradox). This was solved by the inclusion of axioms with the apodictic inference rules of mathematical theories; the re-introduction of axiomatic method pioneered by the ancient Greeks.[10] It results that "rigor" is no more a relevant concept in mathematics, as a proof is either correct or erroneous, and a "rigorous proof" is simply a pleonasm. Where a special concept of rigor comes into play is in the socialized aspects of a proof, wherein it may be demonstrably refuted by other mathematicians. After a proof has been accepted for many years or even decades, it can then be considered as reliable.[163]


Algebra is the branch of Maths which uses alphabetical letters to find unknown numbers. These letters are also called variables. The values which are known in the given expression such as numbers are called constants. Though in higher classes, students will learn the concept of algebra at the potential level. But when we speak about its basics, it covers the general algebraic expressions, formulas and identities, which are used to solve many mathematical problems. Let us learn here the basic concept of algebra with the help of some terminology, formulas, rules, examples and solved problems.


The basic ways of presenting the unknown values as variables help to create mathematical expressions. It helps in transforming real-life problems into an algebraic expression in mathematics. Forming a mathematical expression of the given problem statement is part of pre-algebra.


A set of numbers having a relationship across the numbers is called a sequence. A sequence is a set of numbers having a common mathematical relationship between the number, and a series is the sum of the terms of a sequence. In mathematics, we have two broad number sequences and series in the form of arithmetic progression and geometric progression. Some of these series are finite and some series are infinite. The two series are also called arithmetic progression and geometric progression and can be represented as follows. 041b061a72


About

Welcome to the Cell Phone Dealer's group! You can connect wi...
bottom of page